
Integrating Grammatical Evolution with Neural
Fitness Functions

Claudio Ferretti1 and Martina Saletta1

Dept. of Informatics, Systems and Communication (DISCo),
University of Milano-Bicocca, Milan, Italy

{claudio.ferretti, martina.saletta}@unimib.it

Abstract. Artificial neural networks for source code processing are of-
ten able to develop rich representations for different program properties.
In this software demo, we exploit the knowledge learned by a neural net-
work, i.e. the activation of a chosen neuron, for guiding the evolution of
programs that satisfy given requirements.

1 Introduction

Grammatical evolution (GE) [8], an evolutionary technique for evolving indi-
viduals that comply with a given formal grammar, despite some limitations in
solving general related tasks [11], has proven to be effective for addressing the
problem of program synthesis under certain conditions [5]. Crucial aspects in
this research domain are the design of an appropriate grammar and the choice
of a suitable fitness function.

In the literature, there exists a wide range of machine learning (ML) systems
used for solving different source code-related tasks, such as summarization [2],
classification [7] or completion [6]. The promising results obtained with such
models suggest that ML systems (namely neural networks) are able to learn
valuable and diverse properties related to the source code.

The founding idea of our approach is to exploit the knowledge learned by
ML systems dealing with source code for leading the evolution of programs that
satisfy given specifications or bear certain properties. To this aim, we show how
it is possible to effectively use the activation of a neuron in a neural model as the
fitness function for a GE algorithm by running some experiments with software
we developed.

2 Usage and Examples

In this work, we propose a demonstration for the outlined idea of tapping into
the knowledge learned by the neurons in a neural network that works on source
code for addressing the challenging task of program synthesis. We show two
examples in which, by using the GE implementation provided by the PonyGE2
library [3], GE is used for evolving the individuals and, at each generation, the



2 C. Ferretti and M. Saletta

fitness of each individual is computed by feeding an external neural model with
its phenotype and by considering the corresponding output as the fitness of that
individual. The proposed examples are the following:

1. A simple usage example in which a minimal grammar that yields the pro-
duction of strings of bits is used for building strings having an high number
of zeros.

2. A demonstration of the approach proposed in [4], in which the authors design
a set of experiments for synthesising adversarial examples for misleading the
vulnerability detector described in [9].

While the first example is a mere proof of concept and it is designed for
allowing a novice to become familiar with the interaction among genetic algo-
rithms, neural networks and formal grammars, the other one is the actual core
of this demonstration. We show a direct application of the proposed approach
by providing a set of experiments designed for deceiving a neural classifier for
software vulnerabilities. Through the application of a simplified C grammar, we
show how it is possible to easily evolve programs that maximise or minimise the
output of a single neuron that classifies a source code instance as vulnerable or
safe with respect to a given vulnerability. Furthermore, the same approach can
be used for evolving code snippets that, if injected in a given C function (after
the return statement, so not to affect its functionality), are able to switch its
classification from safe to vulnerable or vice-versa.

The source code and the complete instructions for running the examples are
available at https://github.com/Martisal/adversarialGE.

3 Conclusion and Further Directions

Exploiting the behaviour of ML systems for guiding the evolution of programs
that satisfy given requirements seems to be promising. In general, the founding
idea of using the activation of a neuron for guiding the evolution of programs
can be applied also for analysing the internal behaviour of a neural model. A
recent work [10] points out how the internal neurons of a neural network trained,
in unsupervised mode, in the reconstruction of program vectors are able to au-
tonomously learn different and specific program features. Maximising the activa-
tion of such neurons or, possibly, of neurons that exhibit an interesting behaviour
with respect to their activation pattern, can be useful both for synthesising pro-
grams that satisfy given specification but even for studying and characterising
the internal behaviour of a neural network. From a wider perspective, by exploit-
ing the integration between evolutionary algorithms and deep neural networks,
we could examine the evolved individuals to understand what the trained sys-
tems are actually modeling, and thus to help the research in the growing area
that aims at the explainability of artificial intelligence tools [1].

https://github.com/Martisal/adversarialGE


Integrating Grammatical Evolution with Neural Fitness Functions 3

References

1. Adadi, A., Berrada, M.: Peeking inside the black-box: A survey on explainable
artificial intelligence (xai). IEEE Access 6, 52138–52160 (2018)

2. Allamanis, M., Peng, H., Sutton, C.A.: A convolutional attention network for ex-
treme summarization of source code. In: Proceedings of the 33nd International
Conference on Machine Learning, ICML. pp. 2091–2100 (2016)

3. Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S., Hemberg, E., O’Neill,
M.: Ponyge2: grammatical evolution in python. In: Companion Material Proceed-
ings of Genetic and Evolutionary Computation Conference. pp. 1194–1201. ACM
(2017)

4. Ferretti, C., Saletta, M.: Deceiving neural source code classifiers: finding adversarial
examples with grammatical evolution. In: GECCO ’21: Genetic and Evolutionary
Computation Conference, Companion Volume. pp. 1889–1897. ACM (2021)

5. Hemberg, E., Kelly, J., O’Reilly, U.: On domain knowledge and novelty to improve
program synthesis performance with grammatical evolution. In: GECCO ’19: Ge-
netic and Evolutionary Computation Conference. pp. 1039–1046. ACM (2019)

6. Liu, F., Li, G., Wei, B., Xia, X., Fu, Z., Jin, Z.: A self-attentional neural architecture
for code completion with multi-task learning. In: Proceedings of the 28th Interna-
tional Conference on Program Comprehension, ICPC. pp. 37–47. ACM (2020)

7. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence. pp. 1287–1293 (2016)

8. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Trans. Evol. Comput. 5(4),
349–358 (2001)

9. Russell, R.L., Kim, L.Y., Hamilton, L.H., Lazovich, T., Harer, J., Ozdemir, O.,
Ellingwood, P.M., McConley, M.W.: Automated vulnerability detection in source
code using deep representation learning. In: Proceedings of 17th IEEE International
Conference on Machine Learning and Applications, ICMLA. pp. 757–762. IEEE
(2018)

10. Saletta, M., Ferretti, C.: Mining program properties from neural networks trained
on source code embeddings. CoRR abs/2103.05442 (2021)

11. Sobania, D., Rothlauf, F.: Challenges of program synthesis with grammatical evo-
lution. In: Proceedings of Genetic Programming - 23rd European Conference (Eu-
roGP), held as Part of EvoStar. Lecture Notes in Computer Science, vol. 12101,
pp. 211–227. Springer (2020)


	Integrating Grammatical Evolution with Neural Fitness Functions

