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Abstract. We consider the optimization problem of constructing a bi-
nary orthogonal array (OA) starting from a bigger one, by removing
a specified amount of lines. In particular, we develop a genetic algo-
rithm (GA) where the underlying chromosomes are constant-weight bi-
nary strings that specify the lines to be cancelled from the starting OA.
Such chromosomes are then evolved through balanced crossover and mu-
tation operators to preserve the number of ones in them. The fitness
function evaluates the matrices obtained from these chromosomes by
measuring their distance from satisfying the constraints of an OA smaller
than the starting one. We perform a preliminary experimental validation
of the proposed genetic algorithm by crafting the initial OA as a random
permutation of several blocks of the basic parity-check array, thereby
guaranteeing the existence of an optimal solution.
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1 Introduction

Orthogonal Arrays (OA) are combinatorial structures that have several applica-
tions in cryptography and coding theory, such as secret sharing schemes, stream
ciphers and MDS codes [4]. Formally, given a finite set X of s ∈ N symbols, an
orthogonal array of parameters (N, k, s, t) is a rectangular N×k matrix with en-
tries from X such that, for any subset of t columns out of k, each of the possible
st tuples of t bits appears the same number of times λ = N/st. The parameters t
and λ are also called respectively the strength and the index of the OA. Further,
an OA is called simple if there are no repeated rows in it.

A very interesting application of orthogonal arrays to cryptography is for im-
plementing masking countermeasures to side-channel attacks (SCA) [13]. There,
the strength parameter t of the OA is related to the order of the SCA that the
masking countermeasure can resist. For efficiency reasons, one needs to use an
OA as small as possible, i.e. with the smallest possible number of rows N for a
given number of columns k and strength t.

From a theoretical standpoint, determining the minimum number of rows
admissible for an OA given its strength t is an open problem. The best lower
bound in this respect is Delsarte’s linear programming bound [2], which however
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is not known to be tight in the general. For example, the question of finding
a binary OA of k = 11 columns and strength t = 4 meeting Delsarte’s bound
of N = 96 rows was open until very recently (see e.g. problem 2.14 in [3]),
with Wang [17] proving that the best known example of N = 128 rows is the
lowest number of admissible rows for that case. Consequently, there is both a
theoretical and practical interest in constructing small orthogonal arrays. Most
of the approaches proposed in the literature, either based on algebraic methods
or heuristic techniques, usually aim at constructing an OA from scratch.

On the other hand, in this paper we investigate the opposite direction: start-
ing from an existing OA, try to derive a smaller one by removing some of its
rows. Clearly, the number of removed rows must be a multiple of st, to satisfy the
constraint λ = N/st. To this end, we cast the problem in terms of optimization
and design a genetic algorithm (GA) for tackling it. The GA takes in input an
OA(N, k, s, t) A and tries to generate a smaller OA(N ′, k, s, t) B with N ′ < N
rows. In particular, B is obtained by cancelling p = N−N ′ rows from the original
OA A. Hence, each individual I in the GA population represents a possible list
of T rows to be cancelled from A. The fitness function to be optimized, taken
from [10], measures the deviation from being an OA(N ′, k, s, t) of the matrix
resulting by cancelling the rows specified by I from A. An optimal solution is
thus a list of p rows that, when cancelled from A, results in a N ′ × k matrix
that satisfies the definition of OA(N ′, k, s, t), where λ′ = N ′/st = λ− p/st. The
GA encodes the candidate solutions by representing them as N -bit strings with
t ones, that indicate the rows to be removed from the original matrix. Clearly,
this strategy implies that the number of ones in the chromosomes must be kept
constant, for which we employ a balanced crossover operator investigated in [6]
and a simple swap-based mutation operator.

As a preliminary validation, we test our GA on a very simple problem
instance, which guarantees by construction the existence of an optimal solu-
tion. In particular, we start from the parity-check array of order t, which is
an OA(2t, t + 1, 2, t) and then repeat it for λ blocks, thereby obtaining an
OA(λ2t, t + 1, 2, t). Then, we randomly shuffle the rows of the resulting OA.
Given a new index λ′ < λ, the task of the GA is therefore to discover a set of
(λ−λ′) ·2t rows so that the resulting array is a shuffled repetition of λ′ blocks of
the parity-check array. We perform our experiments for strength t = 4, observ-
ing a steep increase in the difficulty of the problem already for relatively small
starting sizes. This preliminary finding prompts for interesting questions to be
addressed in future research, such as performing a more systematic parameter
tuning phase and analyzing the associated fitness landscape, which could help
in tackling also larger problem instances.

The rest of this paper is structured as follows: Section 2 briefly overviews
the related work on the construction methods for OA. Section 3 formulates the
search of smaller OA by removing rows as an optimization problem. Section 4
details the GA developed for this optimization problem, while Section 5 presents
the preliminary experimental investigation performed to validate it. Section 6
concludes the paper and points out some directions for further research.



Deriving Smaller Orthogonal Arrays from Bigger Ones with GA 3

2 Related Work

Traditional methods for the construction of orthogonal arrays usually rely on
the use of error-correcting codes or other related algebraic methods. Indeed,
the rows of an OA(N, k, s, t) can be seen as codewords of an error-correcting
codes, where the minimum distance is related to the strength of the OA. An
excellent survey of the existing constructions based on these approaches is the
book by Hedayat et al. [4]. On the other hand, the literature concerning the use
of heuristic optimization techniques for constructing OA, as well as other types
of combinatorial designs, is much more limited.

To the best of our knowledge, Safadi and Wang [16, 18] were the first to
propose the use respectively of genetic algorithms and simulated annealing for
designing mixed-level OA, where each column can have entries from sets of dif-
ferent size. The authors of [15] proposed a memetic algorithm for constructing
covering arrays, which are a generalization of OA where each t-uple must occur
at least λ times in each subset of t columns. Mariot et al. [9] considered the
problem of evolving orthogonal Latin squares (which are equivalent to OA of
strength 2) defined by cellular automata rules using genetic algorithms and ge-
netic programming (GP). Later, the same authors in [10] addressed the design
of binary orthogonal arrays with GA and GP.

Binary OA are also equivalent to correlation-immune Boolean functions,
which play an important role in symmetric cryptography [1]. Hence, all works
considering the design of correlation-immune Boolean functions with evolution-
ary algorithms can be seen as addressing the same problem as evolving binary
OA. This includes for instance the work by Picek et al. [13], where the authors
employed GA and various breeds of GP to evolve correlation-immune functions
of high order and minimal Hamming weight. Other works such as Mariot and
Leporati [8, 7] and Picek et al. [12, 14] tackled the design of Boolean functions
satisfying several cryptographic properties of interest, among which correlation-
immunity, using various evolutionary and swarm intelligence methods including
GA, discrete particle swarm optimization (PSO) and Cartesian GP.

3 Removing OA Rows as an Optimization Problem

We now define the task of removing rows from an initial OA to obtain a smaller
one as an optimization problem. In what follows, we will denote an OA as a set
of N vectors over the set X of length k each. Indeed, the order of the rows in
an OA is not important, since it does not influence the balancedness constraint.
Let A = {r1, · · · , rn} be an OA(N, k, s, t) where ri ∈ Xk for all i ∈ {1, · · · , N},
and let λ = N/st be the index of A. Given a smaller index λ′ < λ and a set of
p rows T = {i1, · · · , ip}, with ij ∈ {1, · · · , N} for all j ∈ {1, · · · , p}, define the
new array B as follows:

B = A \ {ri1 , · · · , rip} . (1)

In other words, B is the array obtained by removing the rows specified by T
from A. Although being an N ′ × k binary array with N ′ = λ′ · st, in general B
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will not satisfy the property of an OA(N ′, k, s, t). Therefore, we can state our
optimization problem of interest as follows:

Problem 1. Let A be an OA(N, k, s, t) with λ = N/st, and let λ′ < λ. Find a
set T = {i1, · · · , ip} of p = (λ− λ′) · st rows such that the array B as defined in
Eq. (1) is an OA(N ′, k, s, t), with N ′ = λ′st.

To measure the fitness of a candidate solution T to Problem 1, we employ the
same fitness function defined in [10] for evolving binary OA. The idea is to
compute the Minkowski distance of the vector of occurrences of each t-uple from
the vector (λ′, λ′, · · · , λ′). In particular, the array B resulting from the removal
of the rows specified by T will be an OA(N ′, k, s, t) if and only if such distance is
0. Therefore, the optimization objective is to minimize the fitness function. Due
to the lack of space, we refer the reader to [10] for the formal definition of the
fitness function. In all our experiments, we used the Minkowsky distance with
exponent 2, which basically corresponds to the Euclidean distance.

4 Genetic Algorithm

In order to design a genetic algorithm for tackling Problem 1, one first needs to
define the chromosome encoding of the candidate solutions, which in our cases are
lists of rows to be removed from the original OA. In set-theoretic terms, the most
straightforward way is to use a binary vector that represents the characteristic
function of the set T = {i1, i2, · · · , ip}. Thus, given the orthogonal array A of N
rows, the chromosome CT of a candidate solution T is a binary string of length
N whose coordinates are defined as:

Ct[i] =

{
1, if i ∈ T ,

0, otherwise
, (2)

for all i ∈ {1, · · · , N}. In particular, each chromosome has a constant Hamming
weight, that is the number of ones in it is always fixed to p, which corresponds
to the size of the candidate solution T . Clearly, the constraint above raises the
question of how to make the genetic algorithm preserve the number of ones in
the offspring chromosomes, so that they always represent a valid list of p rows to
be removed from the original OA. To this end, we respectively used a balanced
operator for crossover and a swap-based operator for mutation.

Such operators have been mostly investigated in the literature related to the
optimization of Boolean functions with good cryptographic properties. Since one
of the basic properties that such functions must satisfy to be used in a stream
or block cipher is to be balanced (i.e., having the same number of ones and
zeros in their truth tables), several researchers investigated the design of ad-
hoc crossover operator to ensure this constraint, in order to reduce the size of
the search space explored by a GA. In particular, Millan et al. [11] proposed a
crossover operator where two counters are used to keep trace of the multiplicities
of zeros and ones while the offspring chromosome is being created from the
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parents. Once one of the counters reaches the prescribed threshold, the offspring
is filled with the complementary value in the remaining positions. Other works [7,
9, 5] considered variations of this operator over non-binary strings and for other
problems. Manzoni et al. [6] performed a systematic comparison of three different
balanced crossover operators, observing that the map-of-ones operator usually
performs better. For this reason, we adopted it for our GA. The idea of this
crossover is to represent the two parent strings in terms of their map of ones, that
is the list of positions in the strings where the ones occur. Then, the offspring map
is constructed by randomly copying from the parents’ maps, checking consistency
to avoid that duplicate positions are inserted in the offspring. In this way, starting
from two parents that have the same Hamming weight (that is, map of ones of
the same length), the child chromosome is guaranteed to inherit the same weight.

Regarding the mutation phase, instead, we opted for the simple operator
used in [6], which randomly selects a pair of positions in the bitstrings holding
different values and swap them.

5 Experiments

As a preliminary assessment of our GA for Problem 1, we adopted the following
experimental setup considering only the case of binary OA (hence, with s = 2
and X = F2). For the initial OA, we started with the parity-check array as
a basic building block, also called the zero-sum array in [4]. The parity-check
array P of order t is defined as a (2t) × (t + 1) binary matrix where the first t
columns holds all 2t binary vectors in Ft

2 (for example, in lexicographic order).
The last column, on the other hand, contains the results of the XOR of the bits
in the previous columns. It is rather easy to prove that such an array P is an
OA(2t, t + 1, 2, t). Then, given the desired starting index λ, we constructed a
(λ2t)× (t+ 1) binary array by repeating λ times the OA P , randomly shuffling
its rows at the end. Obviously, the resulting array is an OA(λ · 2t, t + 1, 2, t),
which is not simple since each rows occurs exactly λ times.

For our experiments, we considered the case of strength t = 4, with the
index λ for the initial OA ranging between 2 and 4. Hence, the smallest problem
instance consisted in starting from an OA(32, 5, 2, 4) (λ = 2) and finding a subset
of 16 rows such that the reduced matrix is an OA(16, 5, 2, 4) (λ′ = 1). In this
case, the size of the search space is

(
32
16

)
= 6.32 · 108, which in principle is still

amenable to exhaustive search, but nonetheless provides an interesting case to
gauge the performances of our GA. The largest instance, on the other hand, was
to start from an OA(64, 5, 2, 4) (λ = 4) and find a subset of 32 rows to erase in
order to obtain an OA(32, 5, 2, 4) (λ′ = 2). In this case the search space size is(
64
32

)
≈ 1.82 · 1018, which cannot be exhaustively searched.
Regarding the parameters of our GA, we drew upon those used in [10], which

also targeted the construction of binary OA: steady-state selection with tourna-
ment size 3, population size of 500 individuals, mutation probability 0.2, and a
fitness budget of 100 000 evaluations. Finally, we repeated each experiment for
30 independent runs to obtain statistically significant results.
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λ, λ′ 1 2 3

2 (24/30, 0.0) − −
3 (9/30, 7.07) (4/30, 7.07) −
4 (8/30, 7.07) (0/30, 7.07) (8/30, 7.07)

Table 1. Number of optimal solutions and median fitness over all problem instances.

Table 5 reports, for each of the considered 6 problem instances, the number
of optimal solutions found over the 30 independent runs and the median fitness
value of the best solution evolved by the GA. It can be observed that there is
a steep degradation in performances as soon as one leaves the smallest problem
instance with λ = 2 and λ′ = 1. Indeed, while in this case the GA almost always
converges to an OA(16, 5, 2, 4) starting from an OA(32, 5, 2, 4), the situation
worsens already for λ = 3 with only 9 and 4 optimal solutions found respectively
for λ′ = 1 and λ′ = 2. Over the largest problem instance, i.e. λ = 4 and λ′ = 2,
the GA never converges to an optimal solution. It is also interesting to note
that, except for the smallest problem instance, the median fitness is always the
same. In fact, we found that the fitness distribution for the final best individual
is actually bi-modal over all problem instances tackled by our GA, with the only
observed values being 0.0 and 7.07.

6 Conclusions

In this paper, we proposed a genetic algorithm to evolve orthogonal arrays with
small index starting from bigger ones. The basic idea is to represent a candidate
solution as a set of rows to be removed from the original arrays, which are
represented by bitstrings with a constant number of ones. The GA then evolves
such bitstrings by using ad-hoc crossover and mutation operators that preserve
the Hamming weight of the strings.

The preliminary results gathered in our investigation show that this opti-
mization problem seems to be extremely difficult for GA: indeed, already for
small instances such as removing 32 rows from an OA(64, 5, 2, 4), our GA was
not able to produce any optimal solution. Also, we noticed that all obtained
distributions of the best fitness are bi-modal. These empirical observations in-
dicate that, in future research, two directions should be particularly considered:
first, analyzing the fitness landscape of this optimization problem might help
in understanding why the GA gets stuck in the local optima with fitness value
7.07. As a matter of fact, it would be interesting to analyze the solutions to
which our GA converges, to verify whether it is always the same, or if several
different solutions with the same sub-optimal fitness exist. Second, we suspect
that a more systematic parameter tuning phase could benefit the performances
of our GA on the larger problem instances.
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