
Integrating Grammatical Evolution
with Neural Fitness Functions

Claudio Ferretti and Martina Saletta
Dept. of Informatics, Systems, and Communication (DISCo)

University of Milano-Bicocca

claudio.ferretti@unimib.it



Machine Learning for Source Code Processing
Source code …

given to a neural network
to obtain a classification of single code snippets

Examples:
• detection of identifier misuses
• method names prediction
• classification of programs according to their functionality
• vulnerability detection



Grammatical Evolution (GE)*

• Genotype: a vector of integers that encodes the productions of a given formal grammar expressed in 
Backus-Naur Form

• Phenotype: a program in a given language
*M. O'Neill and C. Ryan. Grammatical evolution. In: IEEE Transactions on Evolutionary Computation, vol. 5, no. 4, pp. 349-358, 2001

Grammar:

Rule 1 : <expr> ::= <expr> <op> <expr>  (0)
| <var> (1)

Rule 2 : <op> ::= + (0)
| - (1) 
|   * (2)
| : (3)

Rule 3 : <var> ::= x (0)
| y (1)
| z (2)

Mapping genotype to phenotype in GE

Genome:

rule = (codon) MOD (#rules)

14       7        5      12       3        9

14 MOD 2 = 0    <expr> <op> <expr> 

7 MOD 2 = 1 <var> <op> <expr>  

5 MOD 3 = 2 z <op> <expr>

12 MOD 4 = 0 z + <expr> 

3 MOD 2 = 1 z + <var> 

9 MOD 3 = 0 z + x  

<expr>Start with Rule 1:



Neural Fitness Functions
• The fitness of each individual is computed as the output of a neuron in a neural network 

given the individual as input instance

i7

i6i5

i4

i3

i2

i1

Neural networkPhenotypePopulation

FITNESS



Example 1: 
binary strings

(Contrived) formal grammar
that defines a language of 
binary strings

Multilayer perceptron
successfully trained
(regression) in counting the 
number of zeros of the binary
string given as input

We use the output of the
MLP for guiding the GE 
evolution of strings
composed of (almost) only
zeros

*see repository: https://github.com/Martisal/adversarialGE 



Example 2: 
deceiving source code classifiers1

Through a simplified C grammar, we use 
GE for synthesising programs that
maximise (or minimize) the output of a
model2 that detects and classifies software 
vulnerabilities.

[1] C. Ferretti and M. Saletta. Deceiving neural source code classifiers: 
finding adversarial examples with grammatical evolution. In: 
GECCO21, companion volume. pp. 1889-1897. 2021

[2] Rebecca L. Russell et al. Automated Vulnerability Detection in 
Source Code Using Deep Representation Learning. In: Proceedings of 
17° IEEE International Conference on Machine Learning and 
Applications (ICMLA). pp. 757-762. 2018.



Example 2: 
deceiving source code classifiers

Evolution of individuals having an 
arbitrary classification

Evolution fo individuals able to 
change the classification of a given
input instance but not its
functionality


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

